

From Requirements Change to Design Change:

A Formal Path

Lian.Wen, R.Geoff. Dromey,
Software Quality Institute, Griffith University,
Nathan, Brisbane, Qld., 4111, AUSTRALIA.

+61 7 3875 5040
l.wen@griffith.edu.au, g.dromey@griffith.edu.au

Abstract

 The ideal we seek when responding to a change in the
functional requirements for a system is that we can quickly
determine (1) where to make the change (2) how the
change affects the architecture of the existing system (3)
which components of the system are affected by the
change (4) and, what behavioral changes will need to be
made to the components (and their interfaces) that are
affected by the change. The change problem is
complicated because requirements changes are specified in
the problem domain, whereas the design response and the
implementation changes that need to be made are in the
solution domain. Requirements and design representations
vary significantly in the support they provide for
accommodating requirements changes. An important way
of cutting down the memory overload and difficulties
associated with making changes is to use the same
representation for requirements and the initial design
response to the change. In this paper we use a formal
component-state representation called behavior trees for
this purpose. It allows individual functional requirements
to be translated into their corresponding behavior trees;
these trees are composed, one at a time, to create an
integrated design behavior tree (DBT). The architecture,
the component interfaces and the component behaviors of
each component in the system are all emergent properties
of the DBT. We extend this design approach, by proposing
a formal method for mapping changes in a system’s
functional requirements, to changes in the architecture, the
behavior of individual components and their interfaces.
Such changes are shown visually on the work products of
the design process that are affected. A tool is used to
implement the change process.

Keywords
 Software change, behavior trees, traceability analysis,
software automation, software evolution, genetic software
engineering, requirements engineering.

.
1. Introduction

 The functional requirements of software systems being
developed and software systems being used are typically

subject to frequent change. Mapping these functional
requirements changes (in problem domain) to the existing
design (in the solution domain) and keeping all design
documents consistent and up-to-date can be a difficult,
tedious, and costly job. Traditional traceability analysis
solutions apply hypertext systems [6, 9-11] and relational
databases [7] to build an environment in which all the
software documents are linked into a web. In this web, if
one document is changed, the other documents that might
be affected can be easily retrieved and browsed. However,
such solutions usually do not provide facilities to
automatically update the affected designs and related
documents. It is a manual job to keep the whole set of
documents consistent and up-to-date.

The previous discussion motivates the need to seek a way
of automating the change process. Behavior Trees make
this possible. The underlying strategy with behavior trees
is to build a design out of its requirements. Each
individual functional requirement is translated (manually)
into its corresponding behavior tree(s). The resulting set
of requirements behavior trees are then integrated one at a
time to produce a design behavior tree (DBT). The design
behavior tree captures all the functional requirements and
shows their logical and behavioral relationships. The
component-based architecture and the component designs
of each of the components in the design are emergent
properties of the DBT. The integrated design behavior
tree, the architecture and the individual component
designs form the baseline we need to manage subsequent
changes to functional requirements. The general idea is to
create the new design behavior tree based on the changed
functional requirements. We then compare and merge the
new design behavior tree with the original design behavior
tree to create an edit behavior tree (EBT) that records all
deleted, added, modified and unchanged functional
requirements. Because the edited behavior tree is still built
out of a set of functional requirements, and because the
architecture, the component interfaces and the component
designs are emergent properties of the EBT we can
process it to generate the required changes to these work
products.

Before discussing the formalization of the change process
we will summarize the main ideas behind behavior trees

and their use in the genetic software engineering design
method.

2. Genetic Software Engineering

2.1 Behavior Trees
 The Behavior Tree Notation captures in a simple tree-

like form of composed component-states what usually
needs to be expressed in a mix of other notations.

Definition: A Behavior Tree is a formal, tree-like
graphical form that represents behavior of individual or
networks of entities, which realize or change states, make
decisions, respond-to/cause events, and interact by
exchanging information and/or passing control.

 It provides a direct and clearly traceable relationship
between what is expressed in the natural language
representation and its formal specification. Translation is
carried out on a sentence-by-sentence, word-by-word
basis, e.g., the sentence “whenever the door is open the
light turns on” is translated to the behavior tree below:

DOOR
[Open]

LIGHT
[On]

 The principal conventions of the notation for
component-states are the graphical forms for associating
with a component a [State], ??Event??, ?Decision?.
Exactly what can be an event, a decision, a state, are built
on the formal foundations of expressions. To assist with
traceability to original requirements a simple convention is
followed. Tags (e.g. R1 and R2, etc, see below) are used
to refer to the original requirement in the document that is
being translated. System states are used to model high-
level (abstract) behavior. They are represented by
rectangles with a double line (===) border. A selected list
of key elements of the notation is given in Figure 1; for

the whole set of the GSE notation please refer [1] or
browse the web-site http://www.sqi.gu.edu.au/gse/papers.

2.2 Requirements Translation

 Requirements translation is the first formal step in the
Genetic Software Engineering (GSE) design process and it
is the only step that cannot be fully automated. Its purpose
is to translate each natural language represented functional
requirement, one at a time, into one or more behavior
trees. Translation involves identifying the components
(bold)(including actors and users), the states (italics) they
realize (including attribute assignments), and the order
indicators (underlined) that is the events and
decisions/constraints that they are associated with, the
data components exchange, and the causal, logical and
temporal dependencies associated with component
interactions. In making translations we introduce no new
terms, translate all terms and leave no terms out. When
these rules are followed translation approaches
repeatability. Consider the following functional
requirement that is marked up using these conventions:
“When a car is at the entrance, if the gate is open (seq)
the car proceeds otherwise if the gate is closed when the
driver presses the button (seq) the gate becomes open”
The translated behavior tree is as follows:

1 CAR
??At-Entrance??

1 GATE
?Open? 1 GATE

?Closed?

1 CAR
[Proceeds] 1 DRIVER

??Pressed-Button??

1 BUTTON
[Pressed]

1 GATE
[Open]

 To maximize communication our intent here is to only
introduce the main ideas of the design method, and do so
in a relatively informal way. The whole design process is
best understood in the first instance by observing its
application to a simple but complete example. Later, the
same example will be modified to explain the proposed
method that maps requirements changes to design
changes. We use a design example for a Microwave Oven
that has already been published in the literature [1, 12].
The seven stated functional requirements for the
Microwave Oven problem are given in the table 1.

The translation for the requirement 7 (R7) in Table 1 is
shown in Figure 2. From Figure 2, we can see that,
initially, the OVEN is in the “Cooking” state. When the
OVEN times-out, the LIGHT is off, POWER-TUBE is
off, BEEPER sounds etc. In Figure 2, there is a “+” sign in

Component-State Label Semantics

tag COMPONENT
[State]

Internal State
Indicates that the component
has realized the particular
internal state. Passes control
w hen state is realized

tag COMPONENT
?? WHEN-State ??

WHEN - State
Indicates that the component
wil l only pass control when and
if the event WHEN-state happens

tag COMPONENT
? IF-State ?

IF - State
Indicates that the component
wil l only pass control i f If-state
is TRUE

System - State The system component,
System-Name realizes the
state "State" and then passes
control to its output

tag System-Name
[State]

Figure 1. Behavior Tree Notation, key elements

the root state “OVEN [Cooking]”. This means this state is
only implied in the original requirement.

Table 1. Functional Requirements for Microwave Oven
R1. There is a single control button available for the user of the oven.
If the oven is idle with the door is closed and you push the button, the
oven will start cooking (that is, energize the power-tube for one
minute).
R2. If the button is pushed while the oven is cooking it will cause the
oven to cook for an extra minute.
R3. Pushing the button when the door is open has no effect (because it
is disabled).
R4. Whenever the oven is cooking or the door is open the light in the
oven will be on.
R5. Opening the door stops the cooking.
R6. Closing the door turns off the light. This is the normal idle state,
prior to cooking when the user has placed food in the oven.
R7. If the oven times-out the light and the power-tube are turned off
and then a beeper emits a sound to indicate that the cooking is finished.

The behavior trees translated from the other six
requirements can be found in [1]. In this paper, we only
present the trees for requirement 3 and requirement 6 in
Figure 3. Requirement 3 has two behavior trees because
the statement for requirement 3 implies that when the
DOOR is closed, the BUTTON is enabled.

R7 LIGHT
[Off] R7 POWER-TUBE

[Off]

R7 BEEPER
[Sounded]

R7
+

OVEN
[Cooking]

R7 OVEN
?? Timed-Out ??

Requirement-7
If the oven times-out the light and the
pow er-tube are turned off and a beeper
emits a sound to indicate that cooking has
finished.

R7 OVEN
[Cooking-Finished

Figure 2. Behavior Tree for Requirement R7

2.3 Requirements Integration

 When requirements translation has been completed each
individual functional requirement is translated to one or
more corresponding requirements behavior tree(s) (RBT).
We can then systematically and incrementally construct a
design behavior tree (DBT) that will satisfy all its
requirements by integrating the requirements’ behavior
trees (RBT). The process of integrating two behavior
trees is guided by the precondition and interaction axioms
referred to below.

Requirement-3
Pushing the button w hen the door is open has
no effect (because the button is disabled)

R3
C+

DOOR
[Closed]

R3
C+

BUTTON
[Enabled]

R3
C

DOOR
[Open]

R3
C+

BUTTON
[Disabled]

Figure 3. Behavior Trees for Requirement R3 and R6

Requirement-6
Closing the door turns off the light. This is the
normal idle state prior to cooking w hen the
user has placed the food in the oven.

R6
+

USER
??Door-Closed??

R6 DOOR
[Closed]

R6 LIGHT
[Off]

R6
+

OVEN
[Idle]

R6
+

OVEN
[Open]

Precondition Axiom
Every constructive, implementable individual functional
requirement of a system, expressed as a behavior tree, has
associated with it a precondition that needs to be satisfied
in order for the behavior encapsulated in the functional
requirement to be applicable.

Interaction Axiom
For each individual functional requirement of a system,
expressed as a behavior tree, the precondition it needs to
have satisfied in order to exhibit its encapsulated
behavior, must be established by the behavior tree of at
least one other functional requirement that belongs to the
set of functional requirements of the system. (The
functional requirement that forms the root of the design
behavior tree is excluded from this requirement. The
external environment makes its precondition applicable).

R6
+

USER
??Door-Closed??

R6
@@

DOOR
[Closed]

R6 LIGHT
[Off]

R6
+

OVEN
[Idle]

R6
+

OVEN
[Open]

R3
C+

BUTTON
[Enabled]

Point of
Integration (@@)

Figure 4. Result of Integrating R6 and R3C

Checking the behavior trees in Figure 3, it is found that

the root node DOOR closed, exists in tree R6, so the RBT
of R3 can be integrated with tree for R6 to create a new
tree as shown in Figure 4.

 Using this same behavior-tree grafting process, a
complete design is constructed (it evolves) incrementally
by integrating RBTs and/or DBTs pairwise until we are
left with a single final DBT (see Figure 5 below). This is
the ideal for design construction that is realizable when all
requirements are consistent, complete, composable and do
not contain redundancies.

 Once the design behavior tree (DBT) has been
constructed the next jobs are to transform it into its
corresponding component architecture (or component
interaction network - CIN) and then project from the
design behavior tree the component behavior trees (CBTs)
and the component interface diagrams (CIDs) for each of
the components mentioned in the original functional
requirements.

2. 4 Software Architecture Transformation

 A design behavior-tree is the problem domain view of
the “shell of a design” that shows all the states and all the
flows of control (and data), modeled as component-state
interactions without any of the functionality needed to

realize the various states that individual components may
assume. It has the genetic property of embodying within
its form three key emergent properties of a design: (1) the
component-architecture of a system, (2) the behaviors of
each of the components, and (3) the interfaces of each of
the components in the system [1].

In the DBT representation, a given component may appear
in different parts of the tree in different states (e.g., the
OVEN component may appear in the Open state in one
part of the tree and in the Cooking state in another part of
the tree). Interpreting what we said earlier in a different
way, we need to convert a design behavior-tree to a
component-based design in which each distinct
component is represented only once. This amounts to
shifting from a representation where functional
requirements are integrated to a representation, which is
part of the solution domain, where the components
mentioned in the functional requirements are themselves
integrated. A simple algorithmic process may be
employed to accomplish this transformation from a tree
into a network [1]. Informally, the process starts at the
root of the design behavior tree and moves systematically
down the tree towards the leaf nodes including each
component and each component interaction (e.g. arrow)
that is not already present. When this is done
systematically the tree is transformed into a component-
based design in which each distinct component is
represented only once. We call this a Component
Interaction Network (CIN) representation, which is simply
a component dependency network for all the components
in the requirements
 The complete Component Interaction Network derived
from the Microwave Oven design behavior tree is shown
below in Figure 6. It defines the component-component
interactions and therefore the interfaces for each
component. It also captures the “business model” or
“conceptual design” for the system and represents the first
cut at the software architecture for a system (the interfaces
may be systematically and significantly simplified but we
not pursue that step here, e.g. light only needs one input).

2. 5 Component Behavior Projection

 In the design behavior tree, the behavior of individual
components tends to be dispersed throughout the tree (for
example, see the OVEN component-states in the
Microwave Oven System DBT). To implement
components that can be embedded in, and operate within,
the derived component interaction network, it is necessary
to “concentrate” each component’s behavior. We can
achieve this by systematically projecting each
component’s behavior tree (CBT) from the design
behavior tree. We do this by simply ignoring the
component-states of all components other than the one we
are currently projecting. The resulting connected

R1
@@

BUTTON
[Pushed]

R1 POWER-TUBE
[Energized]

R1 USER
??Button-Push??

1 OVEN
[Cooking]

1 OVEN
[Idle]

R2 BUTTON
[Pushed]

R2
+

USER
??Button-Push??

R1
@@

OVEN
[Cooking]

R2
+

OVEN ^
[Cooking]

R2 OVEN
[Extra-Minute]

R5
+

USER
??Door-Opened??

R5
@@

DOOR
[Open]

R5 OVEN
[Cooking-Stopped]

R5
+

POWER-TUBE
[Off]

R6
+

USER
??Door-Closed??

R6
@@

DOOR
[Closed]

R6 LIGHT
[Off]

R6
@@

+

OVEN
[Idle]

R6
+

OVEN
[Open]

R7 LIGHT
[Off] R7 POWER-TUBE

[Off]

R7 BEEPER
[Sounded]

R7 OVEN
?? Timed-Out ??

R7 OVEN
[Cooking-Finished

R3
C+

BUTTON
[Enabled]

R3
C

BUTTON
[Disabled]

Figure 5. Integration of all functional requirements

R4
C

LIGHT
[On]

R4 LIGHT
[On]

1 OVEN
[Idle]

R8
+

USER
??Door-Opened??

R8
@@

DOOR
[Open]

R8 LIGHT
[On]

R8
@@

+

OVEN^
[Open]

R3
C+

BUTTON
[Disabled]

“skeleton” behavior tree for a particular component
defines the behavior of the component that we will need to
implement and encapsulate in the final component-based
implementation.

1 DOOR
[Closed]

USER

DOOR

LIGHT

BUTTON

OVEN

POWER-TUBE

BEEPER

Figure 6. Component Interaction Network - (CIN)

To illustrate the effect and significance of component
behavior projection we show the projection of the OVEN
SYSTEM component from the DBT for the Microwave
Oven. Component behavior projection is a key design step
in the solution domain that needs to be done for each
component in the design behavior tree.

R2 OVEN
[Extra-Minute]

R2 OVEN ^
[Cooking]

R7 OVEN
?? Timed-Out ??

R1 OVEN
[Cooking]

R6 OVEN
[Idle]

R8 OVEN ^
[Open]

R5 OVEN
[Cooking-Stopped]

R7 OVEN
[Cooking-Finished

R6 OVEN
[Open]

Figure 7. OVEN Component – Projected Behavior

2. 6 Component Interface Diagram

A component interface diagram (CID) shows the interface
of a component and what other components link to the
component and what other component it links to. A CID
can be directly projected from the design behavior tree.
The first step to project a component’s CID is to highlight
all the nodes in the DBT of the given component. We then
have a list of all the links (state realizations, conditions
and/or events) of the component. This yields the “input”
components and “output” components of any component.

Figure 8 shows the CID of the OVEN component
projected from the design behavior tree in Figure 5. A
component interface diagram acts as a blueprint for the
implementation of a component (these interfaces can be
subject to a systematic simplification process).

[Idle]LIGHT: [Off] USER: ??Button-Pushed??

[Cooking-Stopped]POWER-TUBE: [Off]

[Open] USER: ??Door-Closed??

[Cooking-Finished]BEEPER: [Sounded]

[Cooking]POWDER-TUBE: [Energized] USER: ??Button-Pushed??
USER: ??Door-Open??

[Extra-Minute]BUTTON: [Pushed]

??Timed-Out?? LIGHT: [Off]
POWER-TUBE: [Off]

OVEN

Figure 8. The CID of the component OVEN

LIGHT: [On]

3. From Requirements Change to Design Change

3. 1 Traceability in GSE

In traditional software engineering, most design
documents are generated manually by the design team
based on the designers’ understanding and personal
experience. In contrast with GSE, while the first step,
translating individual functional requirements into RBTs,
needs human understanding, the other steps have the
potential to be either fully or at least partially automated.
This potential for automation of key steps, together with
the clear bi-directional traceability between the work-
products of the design process (see Figure 9) provide
important assistance for designing and implementing
processes to support change of the functional
requirements and the formal mapping of those changes
onto the design.

Functional
Requirements RBTs DBT

CIN

CBTs

CIDs

Function
Level Design Implementation

GSE Diagrams
Figure 9 Traceability between work-products of GSE.

GSE’s strong traceability works as a bridge to connect
functional requirements, to the design.

3.2 Mapping Requirements Changes to Design
Changes

Consider a software system that has been designed based
on a set of functional requirements. Once the requirements
are changed, the question is how to change the design to

match the new requirements. Existing design methods,
including the original GSE method [1], do not provide a
clear process, and supporting representations, for
adjusting the design to accommodate the change in the
functional requirements.

The present proposal addresses this problem of
formalizing the impact of change on the design. The
output of the method is a set of edited design diagrams
which show the impact of the changed requirements on
the design. More specifically, the edited design diagrams
not only show the new design, but also mark which parts
are new in the design, which parts existed in the old
design but have been removed and which parts are
unchanged. Currently, the method is only suitable for
projects originally designed by the GSE method, because
GSE provides a systemic process to translate and integrate
functional requirements into the design. However a similar
concept may be applicable to projects designed using
other methods.

To understand the formalization of change, suppose we
have a design originally constructed using GSE. To map
subsequent changes to the functional requirements onto
the existing design (captured by the DBT), we use the
following major steps:

1. From the changed requirements, we translate any
new/additional requirements to behavior trees.

2. We then use requirements integration and editing
of the old DBT to produce a new DBT that
accurately reflects the changed requirements.

3. The new DBT and the old DBT are then merged
to produce an Edit Behavior Tree (EBT).

4. The other diagrams are then derived from the
EBT using modified GSE processes (section 2).

The overall process is similar to the original GSE process,
but it introduces a very important step: that of comparing
the old DBT and the new DBT and merging them into an
EBT (the detail of the merging algorithm is described in
the next sub-section). The key point is that the EBT
contains all the behaviors of the original DBT and new
DBT and it also contains the editing information, which
marks the change impact of the changes in the functional
requirements.

The last step is to derive from the EBT the other edited
design diagrams: the ECIN (edited component integration
network, which shows the change impact on the
architecture), the ECBTs (edited component behavior
trees) and ECIDs (edited component interface diagrams).
The method of projection is similar to that used in GSE
except it also maintains the edit information. Details of the
projection rules are discussed in the following sections.

3.3 Algorithm to Compare and Merge Behavior Trees

The purpose of comparing the new DBT and the old DBT
is to identify the changes; to find out the new behaviors
that are introduced into the new tree, the behaviors in the
old tree but not in the new tree and the behaviors
unchanged in the two trees. This information is stored in
the EBT. As an example, suppose that T1 and T2, shown in
Figure 10, are the old DBT and the new DBT respectively.

Figure 10 The old tree T1 and the new tree T2

To compare T1 and T2 and generate the Edit Behavior tree,
we use the following algorithm:

1. Start the comparison1 with the root nodes (in this
example, node A). Because the root node exists in
both trees, it is created in the edit behavior tree as an
unchanged node.

2. Find the compared node’s child-node set in both
trees. (In this example, the child-node set in the old
tree is {B, C} and the child-node set in the new tree
is {G, C}.

3. If a node exists in the old tree’s child node set but
not in the new tree’s child node set, this node will be
marked in the edit behavior tree as an old node. (In
this example, B is such a node)

4. In the old tree, the subtrees under the old node will
be generated in the EBT as old. (In this example, the
node D under node B in T1 is such a case)

5. If a node exists in the new tree’s child-node set but
not in the old tree’s child node set, this node will be
created in the EBT as a new node. (In the example, G
is such a node)

6. In the new tree, the subtrees under the new node will
be generated in the EBT as new. (In this example,
the node D under node G in T2 is such a case)

7. If a node exists in the child node sets of both trees, it
will be generated in the EBT as an unchanged node.
(In the example, the node C is such a case)

8. An unchanged node will be a new comparison node
and the algorithm will go back recursively to step 2.

1 In this algorithm, we assume the two trees have an
identical root node. If the two trees have different root
nodes, one possible solution is to add an artificial root in
both trees or adopt more sophisticated algorithms.

The edit behavior tree Te produced from T1 and T2 is
shown in Figure 11. The new part in the tree is drawn with
bold lines and the old part in the tree is drawn with dotted
lines and the unchanged part is drawn in the normal style.

Figure 11 The edit behavior tree Te

One interesting thing in Figure 11 is node D. It is both old
and new, which means it should be an unchanged node.
However, the algorithm cannot resolve this fact at this
stage. In the next stage, when projecting other diagrams
from the EBT, the true status of node D will be
determined.

3.3 The Projection and Transformation Rules

 The rules to project the edited design diagrams from an
EBT are similar to the rules to project design diagrams
from a DBT that have been introduced in sections 2.4-2.6.
The only difference is that the rules used for an EBT have
to carry through the editing information.

 As we have discussed before, during the process of
projecting diagrams from a DBT, the DBT is decomposed
into many atomic elements, while each element is either a
node (a state, a condition or an event) or a link, and each
element maps to a corresponding part in the target
diagram. When a design diagram (a CIN, a CBT or a CID)
is projected (or in the case of a CIN, obtained by
transformation) from a DBT, any atomic part in the design
diagram can be traced back to a link (or several links) or a
node (or several nodes) in the DBT. If the
projection/transformation source is not in the original
DBT but in the EBT, each atomic part in the design
diagram will inherit the editing information from its
counterparts in the EBT.

 For example, with the EBT in Figure 11, because node H
is marked as “new”, in a design diagram, if a particular
part is projected or transformed from node H, that part
will also be marked as “new”. The same rule applies to
entities of “old” and “unchanged” status. Note “old” nodes
are marked for deletion.

In addition to the straightforward mapping rule, there is
one exception. The transformation from an EBT to the
CIN or a CID can be a many-to-one projection. This
means several nodes (or links) in the EBT may

project/transform to one single part in the design diagram,
just as a particular state of a component have more than
one node in an EBT, but when the EBT is transformed to a
CIN, these nodes will merge to a single state within a
component projected behavior tree. Therefore, a single
atomic part in an edited design diagram may have more
than a single edit source in the EBT.

 The rules to merge this different editing information turn
out to be straightforward. Referring to Figure 11 again,
there are two node D’s, one is marked as “new”, which
means the node D exists in the new requirement and
another is marked as “old”, which means node D also
exists in the old requirement. Because node D exists in
both the original requirements and the modified
requirements it must be treated as unchanged in the edited
diagram. From this simple analysis, we know that
whenever an entity of “old” status merges with one of
“new” status, it becomes “unchanged”. Similarly, when
“old” merges with “unchanged” it will be treated as
“unchanged”. For the case of “new” merging with
“unchanged” it is also resolved as “unchanged”. We may
therefore summarize all the projection/transformation
rules for dealing with editing information as follows:

1. “New” to “new”.
2. “Old” to “old”.
3. “Unchanged” to “unchanged”.
4. “New” merged with “new” equals “new”.
5. “Old” merged with “old” equals “old”.
6. “New” merged with “old” equals “unchanged”.
7. “New” or “old” or “unchanged” merged with

“unchanged” equals “unchanged”.

4. An Example

In section 2, we used a simple example to explain the
basic concepts of GSE. If the functional requirements are
now changed, the following example will show how,
when using the method in section 3, the change impact is
captured and reflected in the traceability analysis model.
 Suppose a new component TIMER is introduced. This
may cause the original requirements 1, 2 and 6 to be
changed as described below (the modifications to the three
requirements are underlined).

Modified requirement 1: There is a single control button
available for the user of the oven. If the oven is idle state
and you push the button, the timer will be set to one
minute and the oven will cook (that is, energize the power-
tube)

Modified requirement 2: If the button is pushed while
the oven is cooking it will cause the timer to add one extra
minute

Modified requirement 7: If the timer times-out, the light
and power-tube are turned off and then a beeper emits a
sound to indicate that the cooking is finished.

Figure 12 shows the new requirements behavior tree of
the modified requirement 7 and the edited behavior tree
(EBT) is shown in Figure 13. It was constructed using a
tool that employs the rules described in section 3.

In Figure 13, the new fragments of behavior are drawn

in bold lines and filled with dark gray, the old fragments
of behavior, which are not in the modified system, are
drawn in light grey lines and the unchanged parts are
drawn in the normal style. This diagram shows clearly the
change impact of the modified requirements on the
behavior tree.

From the EBT, other diagrams (the ECIN in Figure 14,

the ECID of OVEN in Figure 15 and the ECBT of OVEN
in Figure 16) are projected. Because of space limitations,
only the editing component diagrams of component
OVEN are shown.

R7 LIGHT
[Off] R7 POWER-TUBE

[Off]

R7 BEEPER
[Sounded]

R7
+

OVEN
[Cooking]

R7 TIMER
?? Timed-Out ??

Modified Requirement-7
If the timer times-out the light and the
pow er-tube are turned off and a beeper
emits a sound to indicate that cooking has
finished.

R7 OVEN
[Cooking-Finished

Figure 12. The RBT for Modified Requirement R7

R1
@

BUTTON
[Pushed]

R1 POWER-TUBE
[Energized]

R1 USER
??Button-Push??

1 OVEN
[Cooking]

1 OVEN
[Idle]

R2 BUTTON
[Pushed]

R2
+

USER
??Button-Push??

R1
@

OVEN
[Cooking]

R2
+

OVEN ^
[Cooking]

R2 OVEN
[Extra-Minute]

R5
+

USER
??Door-Opened??

R5
@

DOOR
[Open]

R5 OVEN
[Cooking-Stopped]

R5
+

POWER-TUBE
[Off]

R6
+

USER
??Door-Closed??

R6
@

DOOR
[Closed]

R6 LIGHT
[Off]

R6
+

OVEN
[Open]

R7 LIGHT
[Off] R7 POWER-TUBE

[Off]

R7 BEEPER
[Sounded]

R7 OVEN
?? Timed-Out ??

R7 OVEN
[Cooking-Finished

R3
C+

BUTTON
[Enabled]

R3
C

BUTTON
[Disabled]

Figure 13. The edited behavior tree of the Microwave Oven

R4
C

LIGHT
[On]

R4 LIGHT
[On]

R1 TIMER
[SetOneMin]

R2 TIMER
[AddOneMin]

R7 LIGHT
[Off] R7 POWER-TUBE

[Off]

R7 BEEPER
[Sounded]

R7 TIMER
?? Timed-Out ??

R7 OVEN
[Cooking-Finished

The EBT of Microwave OVEN.
The removed parts are shown in light grey
color, the new parts are shown in thicker
lines and are filled with dark gray.

R8
-

USER
??Door-Opened??

R8
-

OVEN ^
[Open]

R8
@-

DOOR
[Open]

R8
-

LIGHT
[On]

R3
C+

BUTTON
[Disabled]

R2 OVEN^
[Cooking]

USER

DOOR

LIGHT

BUTTON

OVEN

POWER-TUBE

BEEPER

Figure 14. The ECIN of the new Microwave OVEN

TIMER

From the ECIN (Figure 14), the change impact on the
software architecture is clearly marked. Figure 14 shows
that several interaction relationships between the
component OVEN and other components are removed and
a new component TIMER is added as well as several
component interaction relationships with TIMER.

Figure 15 is the ECID (Edited Component Interface
Diagram) of the component OVEN. In this diagram, the
new text is bolded and filled with dark gray and the old
part is drawn in light gray. It shows that the interface
??TimeOut?? and [Extra-Minute] are removed from
OVEN component and the new component TIMER,
which is called from the [Cooking] interface is added.

[Idle]LIGHT: [Off] USER: ??Button-Pushed??

[Cooking-Stopped]POWER-TUBE: [Off]

[Open] USER: ??Door-Closed??

[Cooking-Finished]BEEPER: [Sounded]

[Cooking]POWDER-TUBE: [Energized]
TIMER: [AddOneMin]

USER: ??Button-Pushed??
USER: ??Door-Open??

TIMER: ??Timed-Out??

[Extra-Minute]BUTTON: [Pushed]

??Timed-Out?? LIGHT: [Off]
POWER-TUBE: [Off]

OVEN

Figure 15. The ECID of the OVEN component

LIGHT: [On]

Figure 16 is the ECBT (Edited Component Behavior

Tree) of the component OVEN. This figure shows the
change impact on its internal behavior.

R2 OVEN
[Extra-Minute]

R2 OVEN ^
[Cooking]

R7 OVEN
?? Timed-Out ??

R1 OVEN
[Cooking]

R6 OVEN
[Idle]

R8 OVEN ^
[Open]

R5 OVEN
[Cooking-Stopped]

R7 OVEN
[Cooking-Finished

R6 OVEN
[Open]

Figure 16 The ECBT of component OVEN

R7 OVEN
[Cooking-FinishedR7 OVEN^

[Cooking]

This example demonstrates how the traceability
analysis model can be used to identify the change impact
on different artifacts in the system, not only at the
architecture level, but also at the component internal
structure and interface level as well. This information can
be used to adjust the implementation to make the system
match the new/modified functional requirements.

5. Comparison

 Other research on software change differs from the
method proposed in this paper. The goal here has been to
find a systematic process to map the changes in functional
requirements to the changes in the design and the
implementation. The closest approach we have found to
our work is software change impact analysis [2, 3 and 4],
which aims to estimate what will be affected in software
and related documentation if a proposed software change
is made. In software change impact analysis, one
approach, called dependency analysis [2], mainly targets
low level software artifacts such as source code. Another
approach, called traceability analysis [6, 7, 8, 9 and 10],
tries to establish traceability among high level software
documents, closer to our proposal. Overall, current
research in this field mainly focuses on developing
software environments that can manage change to
different types of software documents. These
environments provide different facilities such as those for
defining document structures, document templates,
relationships among documents, document revision
control, and key word matching etc. These approaches
allow users to trace changes and identify change impact
on different documents more efficiently. However most of
these environments are not built upon repeatable or well-
defined methods, which implement logic-based rules that
can link formally different types of software documents,
As a result, users have to manually change each impacted
documents.

 In our approach, except for the first step of translating
functional requirements into behavior trees, all the other
steps are based on well-defined rules and processes. This
means they can be implemented by automated or at least
semi-automated tools. A further advantage of this
automated support is that functional requirements can be
integrated into the edit behavior tree one by one. As these
changes are made the corresponding design diagrams can
be automatically re-generated on the fly to reflect each
change as it is made. Therefore, the impact of each
individual requirement on the design can be traced. This
unique feature gives the method a powerful and systematic
means for controlling the impact of change on a design.

6. Conclusion

 The representations we have presented here show
considerable promise as the basis for a fundamental theory
that could underpin the creation of powerful software
design and software maintenance tools. The prototype
tool we have developed confirms the feasibility of this
approach. It was used to generate the edited results used in
this paper.

 There has always been a wide gap between a set of
functional requirements and a software design. GSE [1]
provides a bridge to link requirements to a corresponding
design that will satisfy those requirements. The original
GSE method did not answer the question “if one side of
the bridge changes, how should the other side change to
make the two parts correspond?”. The method introduced
in this paper directly addresses this question. A clear
advantage of using a representation that allows us to build
a system out of its functional requirements is that the
accompanying change process is relatively easy to
formalize and therefore support with automated tools.
This representation also helps us answer the question, as
to where to make the change, and what impact does the
change have on the architecture, the component designs
and the component interfaces.

The proposed model, as presented, is only suitable for
software projects that use behavior trees and the GSE
design methodology. The concepts employed in this
method might however also be adapted for other software
design methods, such as the traditional OO design
approach based on UML [5]. Actually, some diagrams in
UML have some similarities with the diagrams in GSE.
For example the activity diagram with the RBT, the class
diagram with the CIN and the state diagram with the CBT
etc. However, the lack of strict dependency relationships
among different types of diagrams limits the possibility of
automatically updateing other design diagrams if one
diagram is changed. In GSE, the fundamental diagram is
the DBT, which describes all the behaviors of the targeted
system and includes all the information for any other
diagrams. If we could introduce the DBT into UML, it

would not be difficult to invent corresponding methods to
automatically update many different types of design
diagrams.

References

[1] Dromey, R.G., “From Requirements Change to
Design Change: Formalising the Key Steps”, (Invited
Keynote Address), IEEE International Conference on
Software Engineering and Formal Methods, SEFM’2003,
pp. 2-11, Brisbane, September, 2003.
[2] Bohner, S. A., Arnold, R. S., “Software Change
Impact Analysis”, IEEE Computer society Press Los
Alamitos, California, 1996 QA 76 .76 .E93 B65
[3] Bohner , S. A., “Software Change Impact Analysis for
Design Evolution”, Proc. 8th Int’l conf. on software
Maintenance and Re-engineering, IEEE CS Press, Los
Alamitos, Calif., 1991
[4] Bohner, S. A., “Impact Analysis in the Software
Change Process: A Year 2000 Perspective”, Software
Change Impact Analysis, 1996
[5] Fowler, M., Scott, K., , “UML Distilled A Brief Guide
to the Standard Object Modeling Language”, Addison-
Wesley Publishers Ltd., 2000
[6] Garg, P. K., Scacchi, W., “A Hypertext System to
Manage Software Life-Cycle Documents”, IEEE Software,
Vol. 7, No. 3, May 1990, pp. 90-98.
[7] Horowitz, E., Williamson, R. C., “SODOS: A
Software Documentation Support Environment - Its
Definition”, IEEE Trans. Software Eng., Vol. SE-12, No.
8, Aug. 1986
[8] Cimitile, A., Lanuble, F., Visaggio, G., “Traceability
Based on Design Decisions”, Proc. Conf. On Software
Maintenance, IEEE CS Press, Los Alamitos, Clif. 1992
[9] Conklin, J., “Hypertext: An Introduction and Survey”,
Computer, Sept. 1987,
[10] Trigg, R. H., and Weiser, M. “Textnet: A Network-
Based Approach to Text Handling”, ACM Trans. Office
Information Systems, Jan. 1986
[11] Bigelow, J., “Hypertext and CASE”, IEEE Software,
March 1988
[12] Shlaer, S., Mellor, S.J., “Structured Development for
Real-Time Systems”, Vols. 1-3, Yourdon Press, 1985.

